Understanding and Control of Combustion Dynamics in Gas Turbine Combustors

Georgia Institute of Technology

Ben T. Zinn, Tim Lieuwen, Yedidia Neumeier, and Ben Bellows

SCIES Project 02-01-SR095 DOE COOPERATIVE AGREEMENT DE-FC26-02NT41431 Tom J. George, Program Manager, DOE/NETL Richard Wenglarz, Manager of Research, SCIES Project Awarded (05/01/2002, 36 Month Duration) \$452,695 Total Contract Value

Gas Turbine Need

- Need: Gas turbine reliability and availability is important factor affecting power plant economics
 - Problem: Combustion driven oscillations severely reduce part life, requiring substantially more frequent outages
 - Ultimately affects consumer through price of electricity
- Need: Maximum gas turbine power output is needed in order to meet growing demand
 - *Problem*: Combustion driven oscillations often necessitate de-rating of turbine power output

Project Objectives

- Task 1 Improved understanding of combustion driven oscillations
 - Will improve capabilities for designing combustors with reduced dynamics problems
- Task 2 Active control of combustion driven oscillations
 - Will improve capabilities for suppressing detrimental dynamics

Project Schedule

Month	1	6	6		12		18	3	24	30	36
Task 1 Improved Understanding of Combustion Dynamics			╇	╇			┿╋╇╸				+ +
	╆╋╋	++	\mathbf{H}	++	┢╋╋╋	┟┼┼┼	┼╂┼	┢╫╋╴	╋╋╋	┼┼┼┼┼	+-
Sub-task 1.1 - Turbulent Flame-Acoustic Wave Interactions		T	Π	T						7	
1. Low frequency turbulent flame-acoustic wave interaction modelling	T	Ŧ	Ħ	Ŧ	H+		• 11	\square			11
2. Multi-connected flame fronts modelling		$\uparrow\uparrow$	Ħ	$\uparrow \uparrow$		┢┿┿	i i i i				11
3. Experimental assessment of model predictions.		\dagger	Ħ	Ħ	\square		H+		╈┿┿┿┿	┥╎╎╎╎	
Sub-task 1.2 – Measurements and Physics-based Models of Background Noise Effects											
1. Additive combustor noise source modelling		T	Ħ	Ŧ		╒┼┼					
2. Parametric combustor noise source modelling	\square	T	Ħ	Ŧ				ΠŢ			
3.Measure background noise sources		T	Π	\mathbf{T}		<u>H</u>					
4. Experimentally investigate noise effects	\square	T	Π	T	Π	Π	Ш	Ш			
5. Experimentally investigate noise effects upon instability amplitude	\square	T	Π	T	ΠŢ				<u> </u>		
6. Identify dominant background noise effects		T	Π	T	ΠŤ	$\square \square$		ШŤ			Π
Sub-task 1.3 Measurements and Modeling of Nonlinear Combustor Characteristics			Ħ	+							┿┥
1. Experimental transfer function measurements	\dagger	╈		#						╈╉╂┼┼	
2. Deterministic flame dynamics modelline	$\dagger \dagger \dagger \dagger$	†F	Ħ	tf	╎┢	┢╪╪┋	╈╋┺	ЦĒ	╈┿┿┹	┇╏╏╏	
3. Stochastic flame dynamics modelling	\dagger	\dagger	Ħ	$^{++}$	\dagger	\dagger	甘井	LLL	┢╅┿┿┿┿	╈╋╋┿┿	
Sub-task 1.4 - Evaluation of Modeling/Analysis Tools Upon Full Scale Data From		+	Ħ	\dagger	H^{\dagger}	tttt		ΗŤ			Ц
Industrial Partner	Ш	$\downarrow \downarrow$	Ц	Ш	Ш	Ш	Ш	Ш	ЦЦШ		
Task 2 Active Control of Combustion Dynamics	H	Ŧ	Ħ	Ħ							<u>+</u>
Subtask 2.1 - Experimental Studies of Active Control Authority		Ť	Ħ	Ħ	Ħ	H H H	†††				
1. Experimental studies of operating condition affects upon active control	\square	++	H					ΠŤ			
authority	Ш	$\downarrow \downarrow$	Ш	\square	Ш	Ш	Ш	Ш	ЦЦШ		
2. Experimental studies of background noise effects upon control authority	Ш	\prod	Ш	Щ		╘┿┿	+++-			ШП	
3. Experimental studies of time delay affects upon control authority	ШП	\prod	Ц	Щ	Ш	ШТ	ЦБ				+
Sub-task 2.2 Modeling and Analysis of Active Control Authority		Ť	Ħ	Ħ							
1. PDF modeling of parametric noise effects		Ŧ	Ħ	Ŧ		Ш		Ш	ШП	ШП	
2. PDF modeling incorporating active control terms	ШП	Ţ	Ħ	Ŧ				H	ШП	ШП	Ш
3. Statistical modeling incorporating time delays	ШП	Π	∏	\prod	J	HH					<u>+</u>
Sub-task 2.3 - Control Authority Tests on Full Scale System	Ш	Π	П	П	Ш	Ш	LT.				
Write Final Report	Π	1	Ιſ	Тſ	ļΓ	ПT		IΓ			

1.00

White

Georgia Tech

Accomplishments

• High impact accomplishments to date:

- Improved understanding of factors that affect instability amplitude
 - Experimental characterization of combustion process nonlinearities
 - Developed and validated theoretical analysis for prediction of flame nonlinearities
- Improved methods for active instability control

Georgia

- Demonstrated open loop control of instabilities
- Improved understanding of factors influencing open loop control effectiveness
- Developed and validated models of turbulent flame/acoustic wave interactions that occur during screeching instabilities
- Results are improving understanding of combustion instability physics and methods of suppressing oscillations

Experimental Characterization of Heat Release Nonlinearities

Motivation: Linear and Nonlinear Processes in Unstable Combustors

• Linear processes

- Cause inherent disturbances to become self excited and grow in amplitude exponentially, $A \sim e^{\alpha t}$

• Nonlinear processes

Georgia

- Saturate amplitude of self-excited oscillations
- Amplitude prediction capabilities require understanding nonlinearities!
- Objective of this part of work is to measure shape of "Driving" curve

Experimental Approach

- Determine transfer function between chemiluminescence and flow forcing amplitude
 - Dependence upon driving frequency, flow rate, equivalence ratio
 - Reactants premixed ahead of choke point to ensure constant fuel/air ratio
 - Reynolds Number based on premixer exit diameter: 21000 43000 (mean velocity = 20-45 m/s)
 - Amplitude dependence of transfer function determined at 96 conditions/frequencies

• Key Findings:

Georgia

- Flame response nonlinearities significantly more complicated and varied than simple saturation
- Mechanisms identified:
 - Amplitude-dependent flame liftoff
 - Vortex roll-up
 - Excitation of parametric instability

Nonlinear Transfer Function

Saturation Amplitude Can Vary Substantially!

- Similar saturation value as assumed in Dowling nonlinear flame model (temporary global extinction)
- Mechanism is not instantaneous heat release equaling zero here, but flame liftoff

Nonlinear Flame Response More Complicated than Simple Saturation

- Very similar behavior to recent observations of Balachandran *et al.* (C&F, 2005)
- Reynolds number ~21000, f_{drive} = 410 Hz

Even More Complicated Nonlinear Flame Response Observed as Well

Summary of Nonlinear Flame Characteristics

Daniel Guggenheim Space Engineering

Georgia

- Characterization of flame nonlinearities substantially more complicated than simple saturation amplitude
- Here, we plot amplitude at which nonlinearity is first observed.
- Results indicate that variety of behaviors (shape, mechanisms) exist in single combustor

Mechanisms of Nonlinearity

- Performed Large Number of OH-PLIF Imaging Studies to Elucidate Flame Dynamics at two driving frequencies- 130 and 410 Hz
 - -5 driving amplitudes
 - 8 phases taken during cycle, for total of 4000 images per data set
- Many thanks to D. Santavicca and J.G. Lee for their assistance and advice!

Simultaneous OH-PLIF Imaging to Elucidate Flame Dynamics -410 Hz

Low Amplitude Forcing

Large Amplitude Forcing

- **F**_{drive} = 410 Hz
- Large amplitude driving
 - Flame liftoff throughout driving cycle
 - Stabilization point of flame moves from centerbody to local low velocity location downstream

Simultaneous OH-PLIF Imaging to Elucidate Flame Dynamics -410 Hz

CLEMSONPRES.PPT. 10/28/2003. B.T. ZINN. T. LIEUWEN. Y. NEUMEIER

Simultaneous OH-PLIF Imaging to Elucidate Flame Dynamics -130 Hz

Low Amplitude Forcing

erospace Engineering

 Welldefined flame position, structure throughout driving cycle

Large Amplitude Forcing

Frequency Locking and Open Loop Control

Objective

- Investigate nonlinear interaction between driven acoustic oscillation and natural combustor mode during unstable combustion
- Determine important parameters which are affected by frequency spacing between driven oscillation and combustor mode
- Investigate the effectiveness of open-loop control on reduction in acoustic power in combustor

Effect of Acoustic Forcing on Instability Amplitude

niel Guggenheim pace Engineering

Georgia

- Investigated parameters in this study
 - -Ledge Width, A_L
 - -Instability Rolloff, δ_p
 - Entrainment
 Amplitude, A_E

Pressure Entrainment Amplitude Characteristics

Entrainment Amplitude Characteristics

- Entrainment amplitude increases with increasing frequency spacing
- More intuitive result compared to pressure dependence

Acoustic Power Reduction

• Acoustic power reduced by at least 70%. Best results seen where pressure entrainment amplitude is minimized.

Concluding Remarks

- Experimental studies of flame nonlinearity
 - Nonlinear flame characteristics significantly more complicated than simple saturation
 - Shape of transfer function is a function of frequency, Reynolds number
 - Single combustor can exhibit a variety of behaviors
 - Mechanisms identified:
 - Amplitude-dependent flame liftoff
 - Vortex roll-up
 - Excitation of parametric instability
- Nonlinear Entrainment studies
 - Study clarifies nonlinear interactions between driven acoustic oscillations and unstable combustor modes
 - Velocity entrainment amplitude seen to decrease with decreasing frequency spacing
 - Open loop forcing of combustor at frequencies different from unstable mode shown to be quite effective at studied operating condition.
 - Reduction in acoustic power up to 90%. Best results occur at pressure entrainment amplitude minima.